欢迎访问!
六和一合开奖网站
 您现在的位置: 主页 > 六和一合开奖网站 > 正文

微软公布其中英机器翻译水平可与人类相当!

发布日期: 2022-01-12浏览次数:

  】3月14日消息,继在语音识别和机器阅读领域取得的“过人”成绩,由微软亚洲研究院与雷德蒙研究院的研究人员组成的团队今天宣布,其研发的机器翻译系统在通用新闻报道测试集newstest2017的中-英测试集上,达到了可与人工翻译媲美的水平。这是首个在新闻报道的翻译质量和准确率上可以比肩人工翻译的翻译系统。

  newstest2017 新闻报道测试集 由 产业 界 和学术界的合作伙伴共同开发,并于去年秋天在 WMT17大会上发布。 为了确保翻译结果准确且达到人类的翻译水平,微软研究团队邀请了双语语言顾问将微软的翻译结果与两个独立的人工翻译结果进行了比较评估。

  微软技术院士,负责微软语音、自然语言和机器翻译工作的黄学东 称,这是对自然语言处理领域最具挑战性任务的一项重大突破。 “在机器翻译方面达到与人类相同的水平是所有人的梦想,我们没有想到这么快就能实现。”他表示,“消除语言障碍,帮助人们更好地沟通,这非常有意义,值得我们多年来为此付出的努力。”

  机器翻译是科研人员攻坚了数十年的研究领域,曾经很多人都认为机器翻译根本不可能达到人类翻译的水平。虽然 此次突破意义非凡,但研究人员也提醒大家,这并不代表人类已经完全解决了机器翻译的问题,只能说明我们离终极目标又更近了一步。 微软亚洲研究院 副院长 、 自然语言计算组负责人 周明 表示 , 在 WMT17 测试集 上的 翻译结果达到人类水平很鼓舞人心, 但仍 有 很多挑战 需要我们 解决, 比如在实时的新闻报道上 测试 系统 等 。

  微软机器翻译团队研究经理 Arul Menezes 表示,团队想要证明的是:当一种语言对(比如中 -英) 拥有较多的训练数据,且测试集中包含的是常见的大众类新闻词汇时,那么在人工智能技术的加持下 机器翻译系统 的表现可以与人类媲美。

  虽然学术界和产业界 的科研 人员致力于机器翻译研究很多年,但近两年深度神经网络的使用让机器翻译的表现取得了很多实质性突破,翻译结果相较于以往的统计机器翻译结果更加自然流畅。为了能够取得中 - 英翻译的里程碑式突破,来自微软亚洲研究院和雷德蒙研究院的三个研究组,进行了跨越中美时区、跨越研究领域的联合创新。

  其中,微软亚洲研究院机器学习组将他们的最新研究成果 ——对偶学习(Dual Learning)和推敲网络(Deliberation Networks)应用在了此次取得突破的机器翻译系统中。 微软亚洲研究院副院长、机器学习组负责人刘铁岩 介绍道, “这两个技术的研究灵感其实都来自于我们人类的做事方式。”对偶学习利用的是人工智能任务的天然对称性。当我们将其应用在机器翻译上时,效果就好像是通过自动校对来进行学习——当我们把训练集中的一个中文句子翻译成英文之后,系统会将相应的英文结果再翻译回中文,并与原始的中文句子进行比对,进而从这个比对结果中学习有用的反馈信息,对机器翻译模型进行修正。而推敲网络则类似于人们写文章时不断推敲、修改的过程。通过多轮翻译,不断地检查、完善翻译的结果,从而使翻译的质量得到大幅提升。对偶学习和推敲网络的工作发表在NIPS、ICML、AAAI、IJCAI等人工智能的 全球顶级会议上,并且已被其他学者推广到机器翻译以外的研究领域。

  周明带领的自然语言计算组多年来一直致力于攻克机器翻译,这一自然语言处理领域最具挑战性的研究任务。周明表示, “由于翻译没有唯一的标准答案,它更像是一种艺术,因此需要更加复杂的算法和系统去应对。 ”自然语言计算组基于之前的研究积累,在此次的系统模型中增加了另外两项新技术:联合训练(Joint Training)和一致性规范 (Agreement Regularization),以提高翻译的准确性。联合训练可以理解为用迭代的方式去改进翻译系统,用中英翻译的句子对去补充反向翻译系统的训练数据集,同样的过程也可以反向进行。一致性规范则让翻译可以从左到右进行,也可以从右到左进行,最终让两个过程生成一致的翻译结果。

  可以说,两个研究组分别将各自所在领域的积累与最新发现应用在了此次的机器翻译系统中,从不同角度切入,让翻译质量大幅提升。在项目 合作 过程中,他们每周都 会 与 雷德蒙总部 的团队开会讨论, 确保技术可以无缝融合,系统可以快速迭代 。

  newstest2017新闻报道测试集包括约2000个句子,由专业人员从在线报纸样本翻译而来。 微软团队对测试集进行了多轮评估,每次评估会随机挑选数百个句子翻译。为了验证微软的机器翻译是否与人类的翻译同样出色,微软没有停留在测试集本身的要求,而是从外部聘请了一群双语语言顾问,将微软的翻译结果与人工翻译进行比较。

  验证过程之复杂也从另一个侧面体现了机器翻译要做到准确所面临的复杂性。对于语音识别等其它人工智能任务来说,判断系统的表现是否可与人类媲美相当简单,因为理想结果对人和机器来说完全相同,研究人员也将这种任务称为模式识别任务。

  然而 ,机器翻译却是另一种类型的人工智能任务,即使是两位专业 的翻译人员对于完全相同的句子也会有略微不同的翻译,而且两个人的 翻译 都不是错的。那是因为表达同一个句子的 “正确的”方法不止一种。 周明表示: “这也是为什么机器翻译比纯粹的模式识别任务复杂得多,人们可能用不同的词语来表达完全相同的意思,但未必能准确判断哪一个更好。 ”

  复杂性让机器翻译成为一个极有挑战性的问题,但也是一个极有意义的问题。刘铁岩认为,我们不知道哪一天机器翻译系统才能在翻译任何语言、任何类型的文本时,都能在 “信、达、雅”等多个维度上达到专业翻译人员的水准。不过,他对技术的进展表示乐观,因为每年微软的研究团队以及整个学术界都会发明大量的新技术、新模型和新算法,“我们可以预测的是,新技术的应用一定会让机器翻译的结果日臻完善。 ”

  研究团队还表示,此次技术突破将被应用到微软的商用多语言翻译系统产品中,从而帮助其它语言或词汇更复杂、更专业的文本实现更准确、更地道的翻译。此外,这些新技术还可以被应用在机器翻译之外的其他领域,催生更多人工智能技术和应用的突破。

  对偶学习( Dual Learning ) : 对偶学习的发现是由于现实中有意义、有实用价值的人工智能任务往往 会 成对出现,两个任务可以互相反馈 , 从而训练 出 更好的深度学习模型。 例如,在翻译领域,我们关心从英文翻译到中文,也同样关心从中文翻译回英文;在语音领域,我们既关心语音识别的问题,也关心语音合成的问题;在图像领域,图像识别与图像生成也是成对出现。此外,在对话引擎、搜索引擎等场景中都有对偶任务。

  一方面, 由于存在特殊的对偶结构,两个任务可以互相提供反馈信息,而这些反馈信息可以用来训练深度学习模型。也就是说,即便没有人为标注的数据,有了对偶结构也可以做深度学习。另一方面,两个对偶任务可以互相充当对方的环境,这样就不必与真实的环境做交互,两个对偶任务之间的交互就可以产生有效的反馈信号。因此,充分地利用对偶结构,就有望解决深度学习和增强学习的瓶颈 ——训练数据从哪里来、与环境的交互怎么持续进行等问题。

  推敲网络( Deliberation Network s ) :“推敲”二字可以认为是来源于人类阅读、写文章以及做其他任务时候的一种行为方式,即任务完成之后,并不当即终止,而是会反复推敲。微软亚洲研究院机器学习组将这个过程沿用到了机器学习中。推敲网络具有两段解码器,其中第一阶段解码器用于解码生成原始序列,第二阶段解码器通过推敲的过程打磨和润色原始语句。后者了解全局信息,在机器翻译中看,它可以基于第一阶段生成的语句,产生更好的翻译结果。

  联合训练( Joint Training) :这个 方法可以认为是从源语言到目标语言翻译( Source to Target) 的学习与从目标语言到源语言翻译( Target to Source)的 学 习 的 结合。中 英 翻译和英中翻译都使用初始并行数据来训练,在每次训练的迭代过程中,中英翻译系统将中文句子翻译成英文句子,从而获得新的句对,而该句对又可以反过来补充到英中翻译系统的数据集中。同理,这个过程也可以反向进行。这样双向融合不仅使得两个系统的训练数据集大大增加,而且准确率也大幅提高。

  一致性规范( Agreement Regularization) :翻译结果可以从左到右按顺序产生,也可以 从右到左进行 生成 。 该规范对从左到右 和 从右到左的 翻译结果 进行约束。如果这两个过程生成的翻译结果一样,一般而言比结果不一样的翻译更加可信。这个约束,应用于神经机器翻译训练过程中,以鼓励系统基于这两个相反的过程生成一致的翻译结果。